INCOSE Canada Chapter is grateful to

DR. ERIC HONOUR

for providing his slides which accompanied his presentation on

SYSTEMS ENGINEERING RETURN ON INVESTMENT

at the INCOSE Canada Chapter's mini-conference

Systems Engineering Principles Transcend all Domains Focusing on the Value of System Engineering in Delivering Large Complex Systems

> Saturday Sept.28, 2013 Ottawa, Ontario.

This file available at: http://incosecanada.weebly.com

__Honourcode, Inc.__

Systems Engineering Return on Investment

What is "systems engineering" and how much is enough?

Dr. Eric Honour +1 (615) 614-1109 ehonour@hcode.com

Funding provided by

- Honourcode, Inc.
- DASI (Univ of South Australia)

Agenda

Systems Engineering

What is it? Why is it?

SE-ROI Project

- Motivation: How much is enough?
- Goals and methodology

SE-ROI Results

- Primary correlations: success* vs. SE
- Eight SE Activities: front-end vs. back-end
- Right-Sizing SE

*Cost compliance, schedule compliance, stakeholder overall success, technical quality

_Honourcode, Inc.___

Bottom Line

- Systems Engineering is the engineering of complexity
 - More than a process a way of thinking
- SE target: 14% of a development project
- Better programs use more mission definition, more technical leadership
 - Better cost/schedule control, stakeholder success
- Today's <u>process-based</u> SE does not correlate with system technical quality

SE today leads to better programs – but does not lead to better systems.

Results can be used to right-size SE

Systems Engineering

What is this strange discipline?

University of South Australia Defence and Systems Institute

Systems Engineering

- Interdisciplinary approach and means to enable the realization of successful systems
 - Defining customer needs and required functionality early in the development cycle
 - Documenting requirements
 - Proceeding with design synthesis and system validation
- Considers the complete problem: Operations, Cost & Schedule, Performance, Training, Support, Test, Disposal, Manufacturing
- Integrates all disciplines and specialty groups into a team effort, structured development from concept to production to operation
- Considers both business and technical needs of all customers with the goal of providing a quality product that meets the user needs.

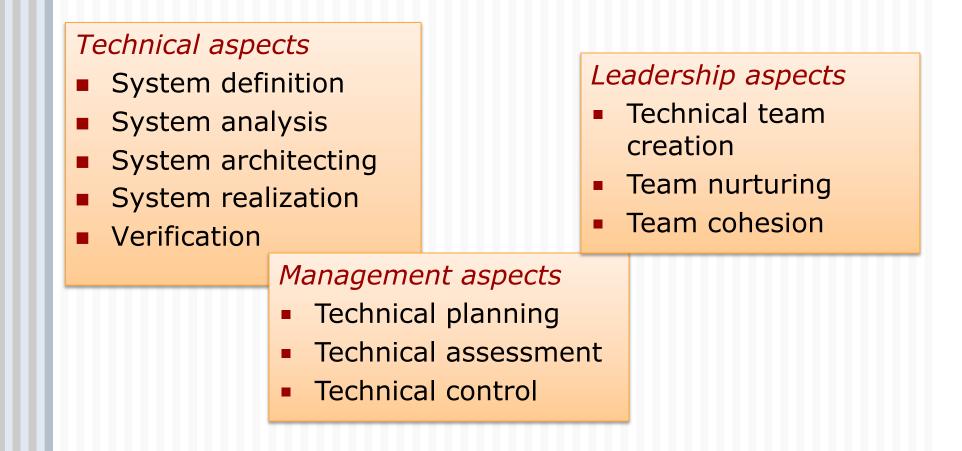
INCOSE Definition

Mars Climate Orbiter

- Launched Dec 98 at Kennedy
- Arrived at Mars in Sep 99
 - 16 minute orbit insertion burn
 - Passed behind Mars during burn
 - No further contact
- Failure causes

Honourcode, Inc.____

- Asymmetric solar panels and solar wind
- No "BBQ" mode to flip asymmetry
- "Small factor" ground-based correction software operating in English units versus Metric
- Intended approach 140km altitude; actual approach 57km
- Development \$193M; launch \$92M



Systems Engineering Objective

- ... is to effectively engineer systems
- Meet the operational and customer needs
 - Functional and Performance
 - Schedule
 - Total Ownership Cost
- Fit within the intended system environment
- Provide sufficient robustness and reliability
- Offer appropriate flexibility
- Consider the entire life cycle

Systems Engineering Scope

Moti Frank (2000) The Cognitive Characteristics of Successful Systems Engineers, INCOSE

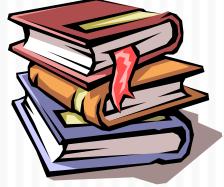
Honourcode, Inc.___

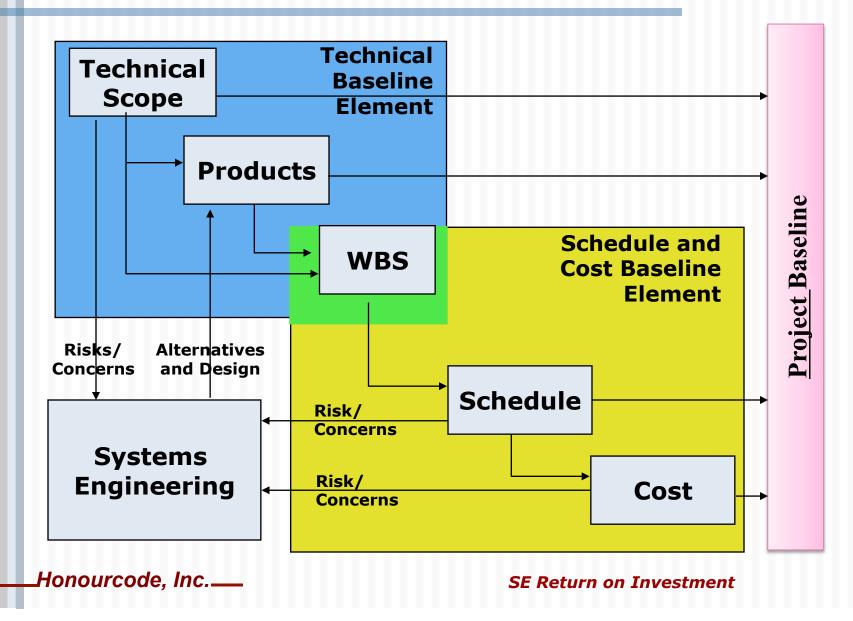
Properties of Complex Systems

Property	Simple Systems	Complex Systems		
Predictability	No surprises	Surprise behavior		
Connectedness	Few components, Simple interfaces, Little feedback	Many components, Complicated interfaces, Much feedback		
Control	Centralized or few, Traceable, Fixed behavior	Diffusion of control, Nontraceable, Adaptable		
Decomposability	Weak interactions, Severable components, Decomposable	Many interactions, All elements essential, Irreducible		
	Toaster	Internet		

Increasing Complexity of Systems...

- Not sufficient to do Systems Engineering by rote
- Premium is on the ability to ...
 - Rapidly decide, as situations develop, what is to be done, how, who with, & how to measure success
 - Rapidly assemble tailored diverse multi-disciplinary teams and get them operational and effective,
 - Maintain effectiveness under unpredictable and rapidly evolving conditions, retaining ability to raise additional tasks as needed
- Dynamic properties of the capability 'emerge' as a result of many decisions about structure, process, strategies, values, personnel, technology, training, ...


... Requires Adaptable Understanding Of "Process"


System Thinking Principles

- Expect the unexpected
- Approach the right problem
- Fully know the problem and all its aspects
- Understand the next higher problem
- Make system-level decisions
- Use criteria based on next-higher-level needs
- Consider the long-term impacts

Systems Engr & Project Mgmt

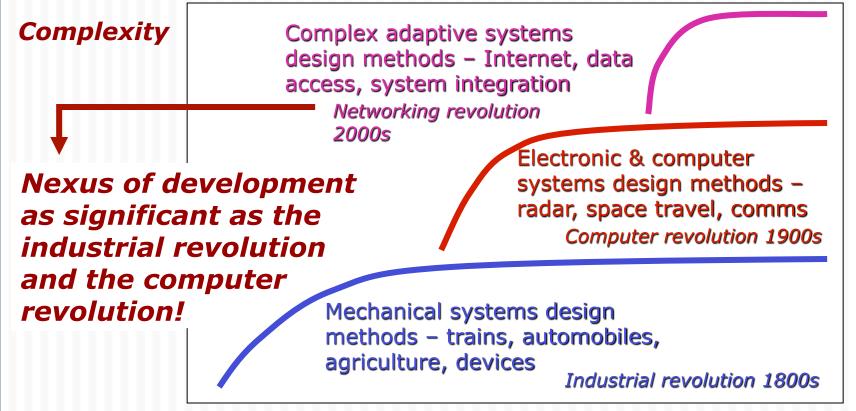
Difficult to Standardize

SE Categories	ANSI/EIA-632	IEEE-1220	ISO-15288	CMMI	MIL-STD-499C
Mission/purpose definition	Not included in scope	 Define customer expectations (Req Anlys) 	 Stakeholder needs definition 	 Develop customer requirements (Req Devlp) 	Not included in scope
Requirements management	System Design Requirements definition 	Requirements analysis	 Requirements analysis 	Req'ments developmentRequirements mgmt	 System requirements analysis and validation
System architecting	System Design Solution definition 	 Synthesis 	Architectural designSystem life cycle mgmt	 Technical solution 	 System product technical req'ments anlys/validation Design or physical solution representation
System implementation	Product RealizationImplementationTransition to Use	Not included in scope	ImplementationIntegrationTransition	 Product integration 	Not included in scope
Technical analysis	Technical Evaluation Systems analysis 	 Functional analysis Requirements trade studies and assessments Functional trade studies and assessments Design trade studies and assessments 	 Requirements analysis 	 Measurement and analysis 	 Functional analysis, allocations and validation Assessments of system effectiveness, cost, schedule, and risk Tradeoff analyses
Technical management/ leadership	Technical Mgmt Planning Assessment Control	 Technical mgmt Track analysis data Track requirements and design changes Track performance Against project plans Against technical plans Track product metrics Update specifications Update architectures Update plans Maintain database 	 Planning Assessment Control Decision mgmt Configuration mgmt Acquisition Supply Resource mgmt Risk mgmt 	 Project planning Project monitoring & control Supplier agreement mgmt Process and product quality assurance Configuration mgmt Integrated project mgmt Decision analysis and resolution Quantitative project mgmt Risk mgmt 	 Planning Monitoring Decision making, control, and baseline maintenance Risk mgmt Baseline change control and maintenance Interface mgmt Data mgmt Technical mgmt of subcontractors/vendors Technical reviews/audits
Verification & validation	Technical Evaluation Requirements validation System verification End products validation 	 Requirement verification Functional verification Design verification 	VerificationValidation	VerificationValidation	 Design or physical solution verification and validation

Amagasaki Railway Crash

- Derailment in Amagasaki, Apr 05
 - Seven-car train
 - Front two cars into apartment complex parking garage
 - 106 dead, 555 injured

- Japanese train system based on punctuality
 - Commuters rely on timing of cross-station transfers
 - Punctuality vastly important 6 sec delay is concern
 - Drivers face pay penalties, humiliating "training"
- Failure investigation
 - Driver overran previous station, lost 90 sec to back up
 - Train speed was 100 kph in area zoned for 70 kph
 - Stones on the track


Systems Engineering and Complexity

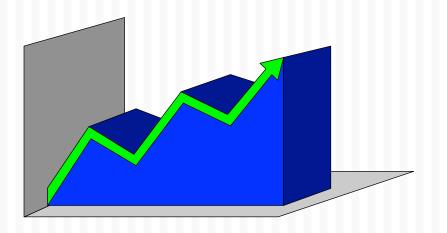
Systems Engineering is the engineering of complexity! ...and it always has been

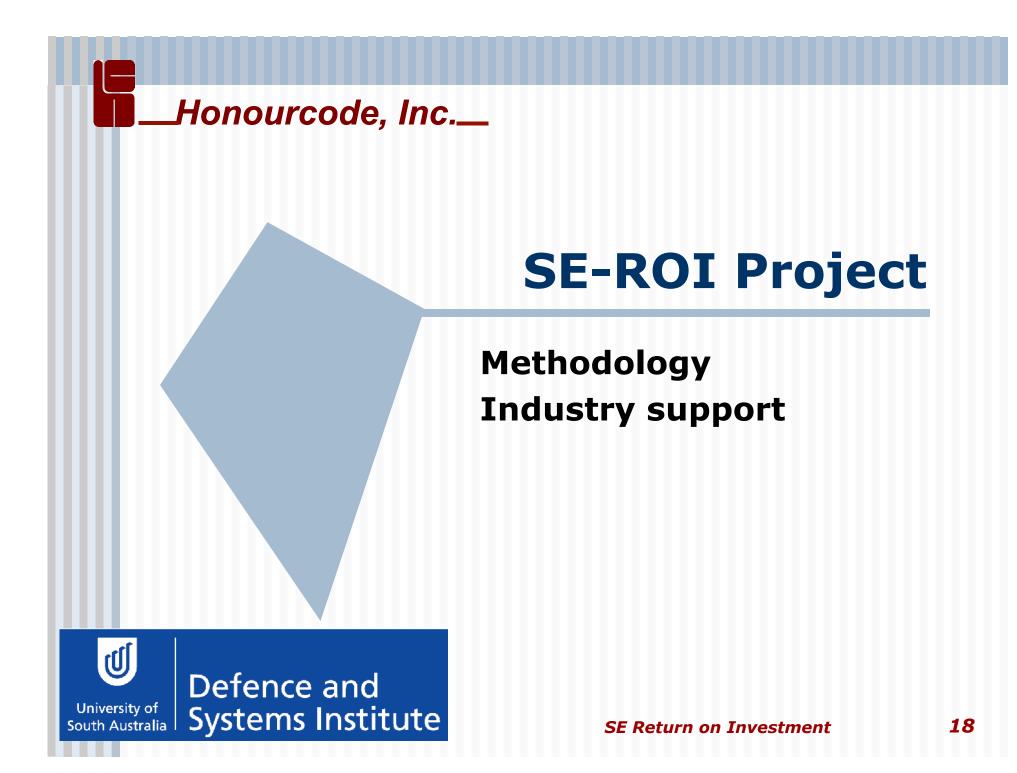
Today, SoS and complexity are affecting Systems Engineering:

- New methods appearing
- Old methods used in new ways

Paradigm Shifts in Systems Engineering

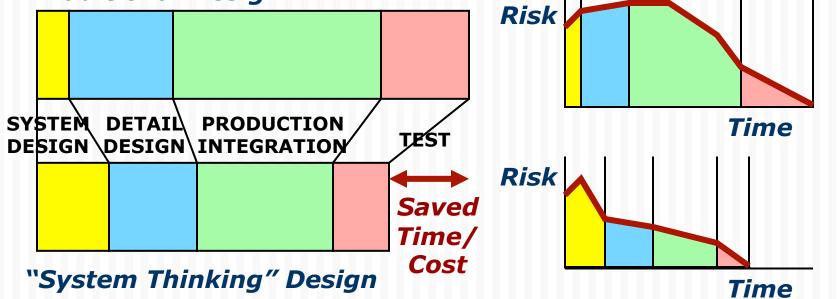
Historical Time


 Each paradigm fuels a rapid growth and then stagnates as it tries to handle more complex products


_Honourcode, Inc.___

Systems Engineering Is More Than a Process

- It is as much a way of thinking and operating as it is a process.
- It is a road map; a pathway to help us achieve our goals.
- The process assists, but it is not a substitute for getting the job done.



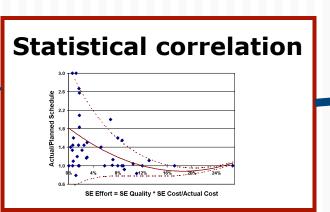
Heuristic Claim of SE

Better systems engineering leads to

- Better system quality/value
- Lower cost
- Shorter schedule

Not Known: How Much Is Enough?

_Honourcode, Inc.___


SE-ROI Project

Interviews

- Just-completed programs
- Key PM/SE/Admin
- Translate program data into project structure
- Program characterization
- Program success data
- SE data (hours, quality, methods)

Desired Results

- 1. Statistical correlation of SE practices with project success
- 2. Leading indicators
- 3. Identification of good SE practices

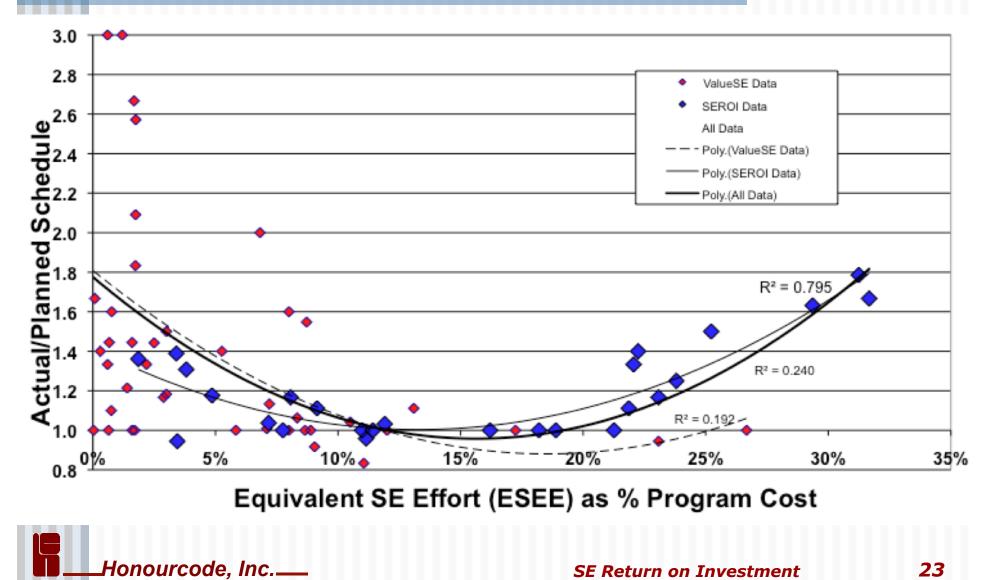
_Honourcode, Inc.___

Basic Demographics

Characteristic	ValueSE Data Set	SE-ROI Data Set
Number of organizations	Unknown	16
Number of data points	44	48
Funding method	Unknown	39 contracted, 9 amortized
Program total cost	\$1.1M - \$5.6B Median \$42.5M	\$600K - \$1.8B Median \$14.4M
Cost compliance	(0.8):1 - (3.0):1 Median (1.2):1	(0.6):1 – (10):1 Median (1.0):1
Development schedule	2.8 mo. – 144 mo. Median 43 mo.	2 mo. – 120 mo. Median 35 mo.
Schedule compliance	(0.8):1 - (4.0):1 Median (1.2):1	(0.3):1 – (2.5):1 Median (1.1):1
Percent of program used in systems engineering effort, by cost	0.1% - 27% Median 5.8%	0.1% - 80% Median 17.4%
Subjective assessment of systems engineering quality (1 poor to 10 world class)	Values of 1 to 10 Median 5	Values of 1 to 10 Median 7
Honourcode Inc	SE Deturn	n Investment 21

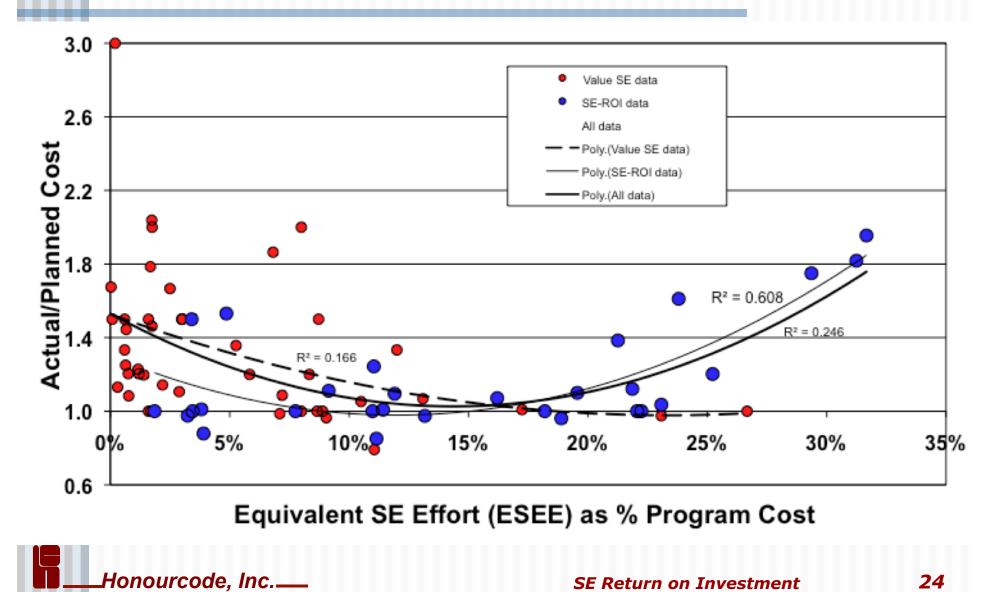
__Honourcode, Inc.__

SE-ROI Results: Primary Relationships


SE effort correlates with 3 of 4 success measures

Optimum SE effort 14.4% of total development cost

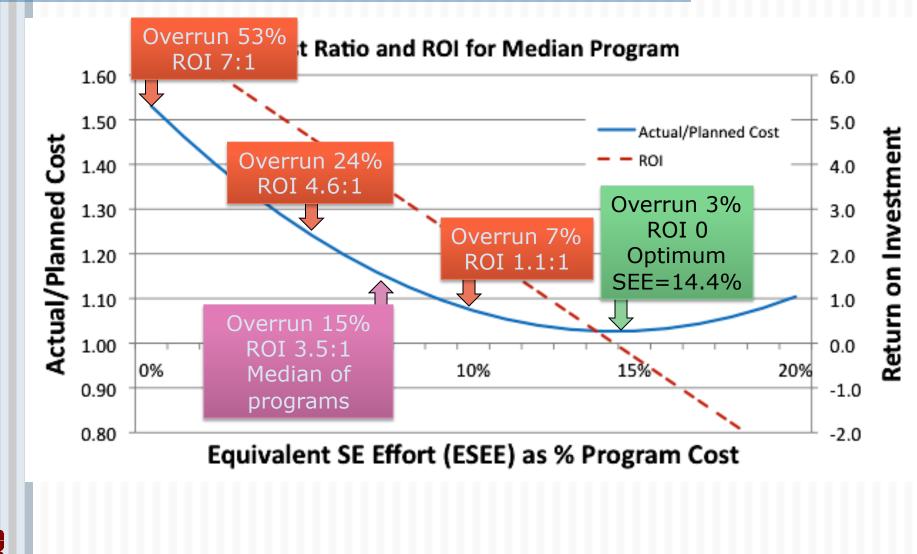
University of South Australia Defence and Systems Institute



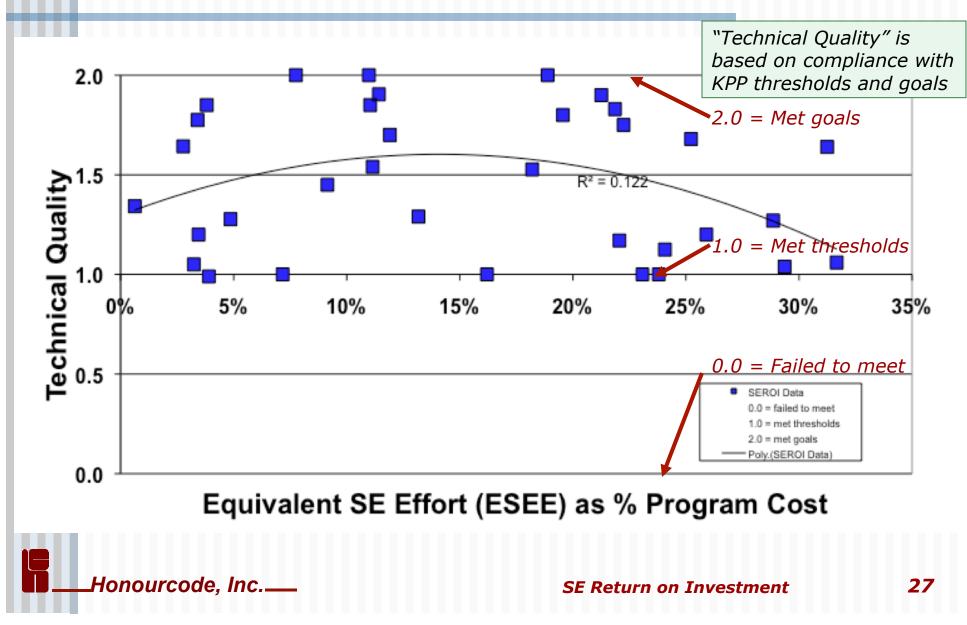
Schedule vs. SE Effort

Cost vs. SE Effort

SE Return on Investment


24

Overall Success vs. SE Effort

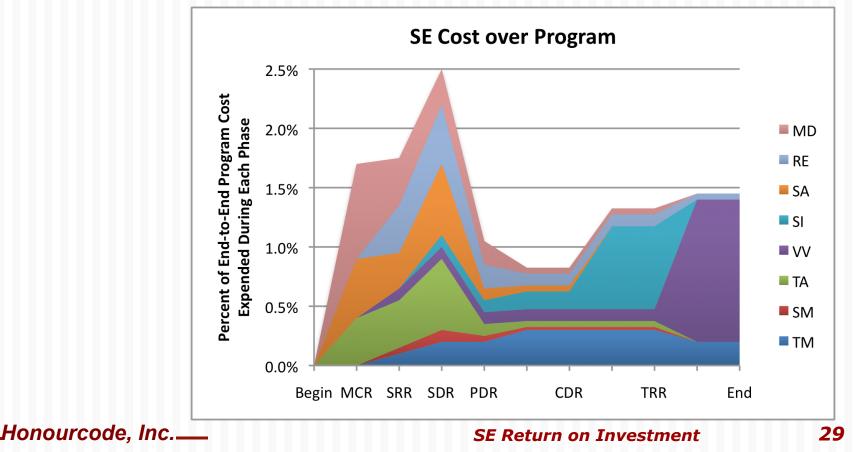


Technical Quality vs. SE Effort

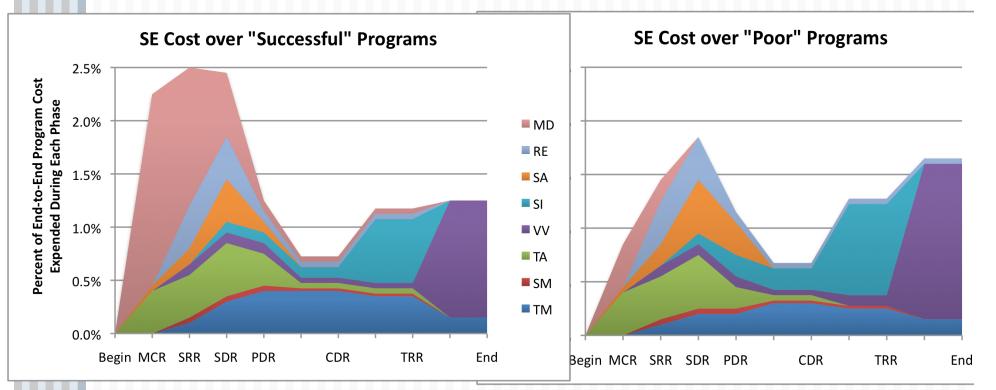
__Honourcode, Inc.__

SE-ROI Results: Eight SE Activities

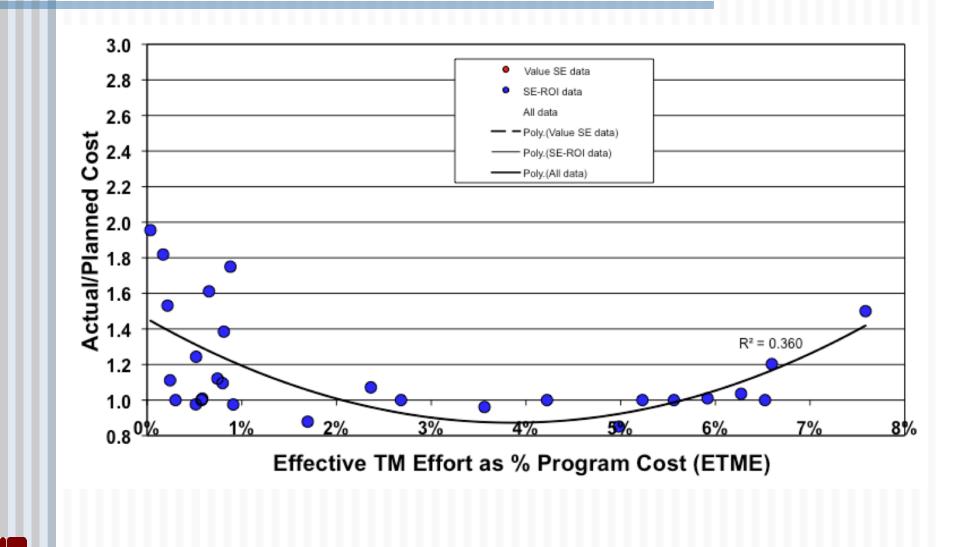
Most SE activities correlate w/ cost, schedule, overall None correlate w/ quality Successful programs use front-end; poor programs use back-end


University of South Australia Defence and Systems Institute

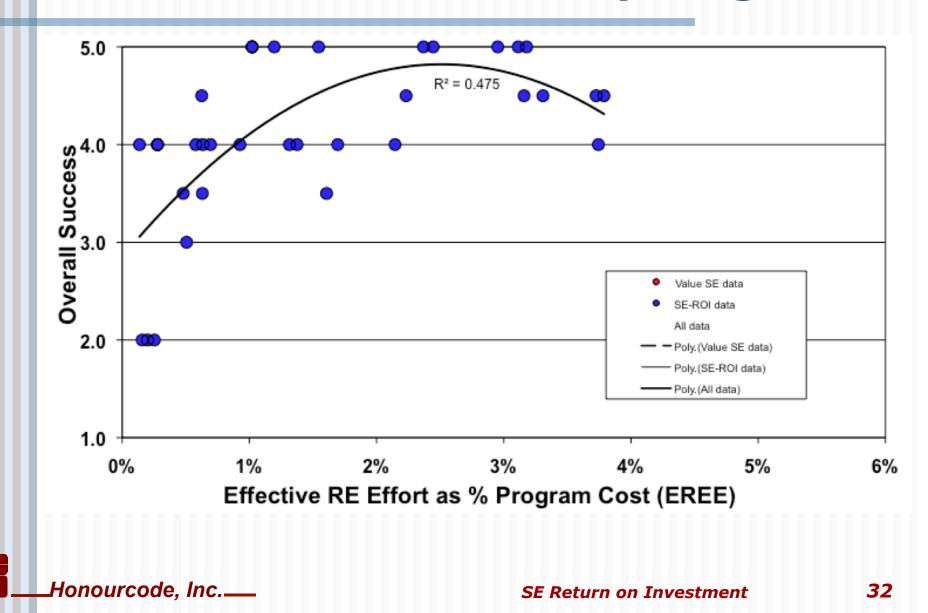
Breakout by SE Activities


- MD Mission/Purpose Definition
- RE Requirements Engineering
- SA System Architecting
- SI System Integration
- VV Verification & Validation

- TA Technical Analysis
- SM Scope Management
- TM Technical Leadership/Management


Breakout by Success

Successful (~on cost) •More mission/purpose defn •More tech leadership/mgmt •More Systems Engineering


Poor (overran cost)
More system integration
More verif & valid
Less Systems Engineering

Typical Data: Overall Success vs. Reqs Engr

Effect of SE Activities

		Quantifiable Correlation Exists With			h
Activity	Code	Cost Compliance	Schedule Compliance	Overall Success	Technical Quality
Total Systems Engineering Effort	SE	Yes	Yes	Yes	Perhaps
Mission/Purpose Definition Effort	MD	Yes	Yes	No	No
Requirements Engineering Effort	RE	Yes	Yes	Yes	No
System Architecting Effort	SA	Yes	Yes	Yes	No
System Integration Effort	SI	Yes	Yes	Yes	No
Verification & Validation Effort	VV	Yes	Yes	No	No
Technical Analysis Effort	ТА	Yes	Yes	Perhaps	No
Scope Management Effort	SM	Yes	No	Yes	No
Technical Management/ Leadership Effort	ТМ	Yes	Yes	Yes	No

Honourcode, Inc.____

SE Return on Investment

33

__Honourcode, Inc.__

SE-ROI Results: Right-Sizing SE

Parametric sizing of SE to optimize success

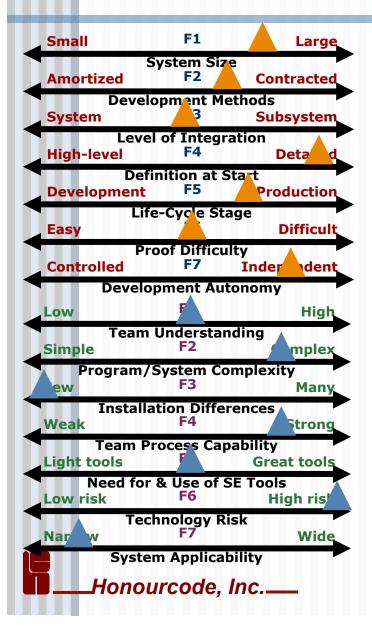
University of South Australia Defence and Systems Institute

Optimum Levels, Median Program

Activity	Code	Optimum	Median of data
Total Systems Engineering	SE	14.4%	8.5%
Mission/Purpose Definition	MD	1.3%	1.6%
Requirements Engineering	RE	2.0%	0.8%
System Architecting	SA	3.9%	1.4%
System Integration	SI	2.8%	1.5%
Verification & Validation	VV	2.4%	2.0%
Technical Analysis	TA	1.8%	1.3%
Scope Management	SM	1.4%	0.3%
Technical Leadership/Management	ТМ	3.9%	1.9%

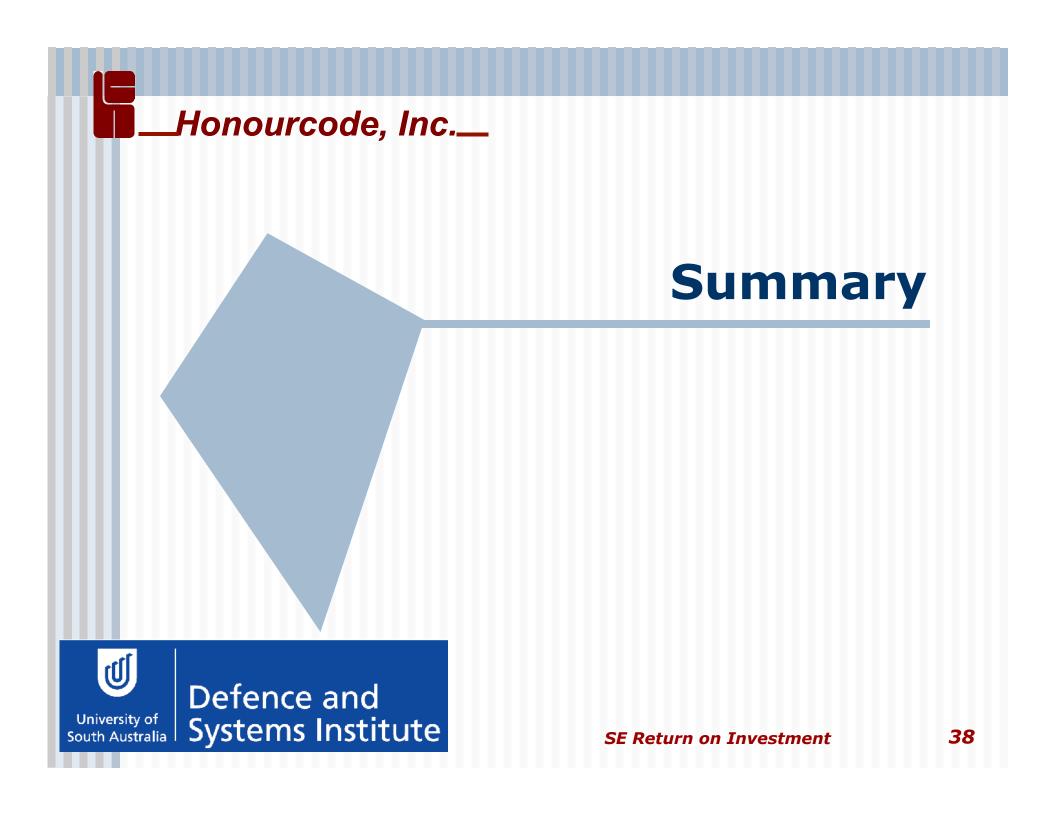
Honour, EC, "Systems Engineering Return on Investment, UniSA'12

Estimating optimum SE


- Start with median optimum values
- Estimate 14 characterization parameters
- Adjust SE level for characterization
 - Apply weights to median SE level to determine "should-be" level

$$OSEE = OSEE_0 * \prod_{j=1\dots 14} \left(\frac{PP_j}{.5}\right)^{\frac{+Weight}{100}}$$

Result is optimum SE effort levels for a program of these characteristics


Example: "Space System"

	Median Optimum	Adjustment	Program Optimum
MD	1.3%	0.38	0.5%
RE	2.0%	0.50	1.0%
SA	3.9%	0.69	2.7%
SI	2.8%	0.50	1.4%
VV	2.4%	0.68	1.9%
TA	1.8%	0.79	1.3%
SM	1.4%	0.72	1.2%
ТМ	3.9%	1.41	5.5%
SE	14.4%	1.08	15.6%

SE Return on Investment

37

Bottom Line

- Systems Engineering is the engineering of complexity
 - More than a process a way of thinking
- SE target: 14% of a development project
- Better programs use more mission definition, more technical leadership
 - Better cost/schedule control, stakeholder success
- Today's <u>process-based</u> SE does not correlate with system technical quality

SE today leads to better programs – but does not lead to better systems.

Results can be used to right-size SE

___Honourcode, Inc.__

Systems Engineering Return on Investment

Questions?

Dr. Eric Honour +1 (615) 614-1109 ehonour@hcode.com

University of South Australia Defence and Systems Institute